Общие рекомендации по ремонту блока питания телевизора
Итак, пошаговая инструкция ремонт импульсного блока питания:
- Включаем телевизор, убеждаемся, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в блоке питания. На всякий случай надо будет проверить напряжение питания строчной развертки.
- Выключаем телевизор, разбираем его.
- Проводим внешний осмотр платы телевизора, особенно участка, где размещен блок питания. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и другое. Надо будет в дальнейшем проверить их.
- Внимательно смотрим пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.
- Проверяем цепь питания: прозваниваем шнур питания, предохранитель, выключатель питания (если он есть), дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предохранитель не сгорает — просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.
- Проверяем остальные детали блока — диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.
- Смотрим, нет ли замыканий во вторичных цепях питания — для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.
Включаем. На этом этапе возможны три варианта:
- Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку — для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150–160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим. В некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть) или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.
- Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что импульсный блок питания не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280–300 Вольт. Если его нет — иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено, может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.
- Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните — чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.
Как подключить?
Рассмотрим подробнее, как подсоединить БП. В большинстве случаев в активную антенну усилитель уже вмонтирован. А вот в пассивной – его нет. Чтобы его подключить, в первую очередь необходимо собрать антенный кабель со штекером, который будет предназначен для данных целей. Рассмотрим, как это сделать.
Сначала следует подготовить сам кабель, то есть зачистить его. Для этого острым канцелярским ножом либо скальпелем выполняют тонкий разрез по окружности на удалении 1,5 см от края кабеля
При выполнении этой работы очень важно быть аккуратным и постараться не повредить волоски экранированной оплётки, расположенной сразу под изоляционным слоем
После того как эти действия будут выполнены, упомянутые волоски нужно осторожно отогнуть, а расположенный около них кусок фольги убрать
Отступив от загнутого края оплетки примерно 5 мм, необходимо сделать ещё один срез по окружности. Он необходим для того, чтобы удалить внутренний изоляционный слой. После этого кабель, подготовленный к монтажу, следует просунуть под соответствующие крепежи в коробке БП и затянуть винтами.
Обращаем особое внимание на то, что когда подключается провод, его металлизированная оплетка непременно должна иметь контакт с залуженной площадкой, которая является обязательным элементом конструкции любого корпуса БП. Если этого не сделать, то питание на антенну попросту не будет поступать
Нужно учесть и тот факт, что кабельная оплетка ни в коем случае не должна соприкасаться с центральной жилой самого провода. Если это случится, то произойдет короткое замыкание, и индикатор работы модуля не будет функционировать.
Для сведения: при корректном подсоединении блока питания с самим антенным кабелем после выполнения всех необходимых настроек телевизор обычно показывает намного больше каналов, чем прежде.
Чем отличается от трансформаторного блока питания
Блок-схемы трансформаторного и импульсного блоков питания
Как работает трансформаторный блок питания
В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.
Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.
Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации
Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.
Устройство импульсного блока питания и его принцип работы
В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».
Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность
Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц
Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.
Блок-схема ИИП с формами напряжения в ключевых точках
Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).
На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.
Достоинства и недостатки импульсных блоков питания
Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.
Размер тоже имеет значение
Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.
Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.
Ремонт блоков ИБП компьютеров и телевизоров
Для ремонта источника импульсного напряжения понадобится такие инструменты как паяльник с регулировкой температуры, набор отвёрток, кусачки, пинцет, монтажный нож, обычная лампа на 100 Вт. Из материала понадобится припой, флюс, спирт для удаления канифоли кисточкой с паек платы. Из приборов нужен будет мультиметр.
Так как импульсные блоки питания (ИБП) телевизоров и компьютеров имеют стандартные схемы, то и методика обнаружения неисправностей в них будет одинакова. Нарушение работы преобразователя напряжения телевизора можно определить по отсутствию подсветки светодиода.
Блок питания компьютера АТХ
Начинают ремонт с проверки сетевого шнура, снятия блока питания с телевизора, внимательного осмотра элементов и дорожек платы. Ищут вздутые конденсаторы, потемнение дорожек, треснутый корпус алиментов, обугливание сопротивлений, нарушение целостности паек, особенно у выводов импульсного трансформатора.
Если внешних повреждений не найдено мультиметром, проверяют предохранитель, диоды, силовые транзисторы ключей, работоспособность конденсаторов. Когда вы уверены в исправности всех элементов, а устройство не работает, нужно менять микросхему генератора импульсов.
В преобразователе телевизора основные неисправности возникают в балластных резисторах, электролитических конденсаторах низкого напряжения, диодах. Прозвонить их можно не снимая с плат (кроме диодов). После устранения неисправностей припаивают лампу 100 Вт взамен предохранителя и включают.
- Лампа загорается и гаснет, появляется свечение светодиода спящего режима. Светится экран телевизора. Тогда проверяют напряжение строчной развертки, если оно, выше нормы меняют конденсаторы.
- Лампа загорается и тухнет, а светодиод не светится, нет растра. Причина, скорее всего в генераторе импульсов. Меряют напряжение на конденсаторе, которое должно находиться в пределах 280 – 300В. Если напряжение ниже, неисправность ищут в диодах или в утечке конденсатора. При отсутствии напряжения на конденсаторе, снова проверяют все цепи высоковольтных источников питания.
- Лампа горит ярко при неисправности некоторых элементов. Источник напряжения проверяют заново.
С помощью лампы накаливания можно находить вероятные неисправности источника. Для ремонта источника АТХ компьютера, нужно собрать схему нагрузки как на рисунке ниже или подключить к компьютеру. Однако, если неисправность блока АТХ на устранена можно спалить материнскую плату.
Вариант нагрузки для БП компьютера
Внешнее проявление отказа блока ATX может быть, когда не включается материнская плата, вентиляторы не работают или блок пытается многократно включиться. Перед поиском неисправностей устройства нужно пылесосом и кисточкой очистить его от пыли. Также проводится визуальный осмотр элементов, дорожек платы и только после этого включается нагрузка.
Если перегорает предохранитель, тогда подключают лампу накаливания 100 Вт, как при проверке источника напряжения в телевизоре. Когда лампа загорается, но не гаснет, неисправность ищут в конденсаторе, трансформаторе и диодах моста. При целом предохранителе неисправность могла возникнуть в ШИМ контроллере, тогда необходимо заменить устройство. Также многократный запуск источника указывает на неисправность стабилизатора опорного напряжения.
Диагностирование и простейший ремонт
Человеку, собирающему попытаться отремонтировать блок питания бытовой электронной техники надо быть заранее готовым к тому, что не всякое питающее устройство можно отремонтировать. Сегодня некоторые производители, выпускают электронику, блоки которой подлежат не ремонту, а комплектной замене.
Ни один мастер не возьмется за ремонт такого блока питания, ибо изначально он предназначен для полного демонтажа старого устройства с заменой на новое. Часто подобные электронные приборы просто залиты каким-либо компаундом, что сразу снимает вопрос о его ремонтопригодности.
Как показывает статистика, основные неисправности блока питания вызваны:
- неисправностью высоковольтной части (40,0%), которые выражаются пробоем (перегоранием) диодного моста и выходом из строя фильтрующего конденсатора;
- пробоем силового полевого или биполярного транзистора (30,0%), формирующего высокочастотные импульсы и находящегося в высоковольтной части;
- пробоем диодного моста (15,0%) в низковольтной части;
- пробоем (выгоранием) обмоток дросселя выходного фильтра.
В остальных случаях диагностирование достаточно сложно и без специальных приборов (осциллограф, цифровой вольтметр) выполнить его не удастся. Поэтому если неисправность блока питания вызвана не четырьмя вышеупомянутыми основными причинами, не стоит заниматься его домашним ремонтом, а сразу вызвать мастера для замены или приобретать новое питающее устройство.
Неисправности высоковольтной части достаточно просто обнаружить. Они диагностируются перегоранием предохранителя и отсутствием напряжения после него. Третий и четвертый случай можно предположить если предохранитель исправен, напряжение на входе низковольтного блока присутствует, а входное отсутствует.
При перегорании предохранителя необходимо осмотреть электронную плату. Неисправность фильтрующего электролитического конденсатора обычна выражена его вздутием. Для проверки диодов высоковольтной выпрямительной части придется выпаять каждый из них и проверить мультиметром (тестером).
Желательно проверку производить одновременно всех деталей. При выгорании нескольких электронных элементов при замене одного из них на исправный он может выгореть повторно из-за комплексной неисправности, которая не была устранена.
После замены деталей необходимо установить новый предохранитель и включить блок питания. Как правило после этого блок питания начинает работать.
Если предохранитель не перегорел, а напряжение на выходе блока питания отсутствует, то причина неисправности в пробое выпрямительных диодов низковольтной части, перегорании дросселя или выходе электролитических конденсаторов вторичного выпрямительного блока.
Неисправность конденсаторов диагностируется при их вздутии или вытекании из их корпуса жидкости. Диоды необходимо выпаять и проверить тестером аналогично проверке высоковольтной части. Целостность дроссельной обмотки проверяется тестером. Все неисправные детали необходимо заменить.
Если не удается найти нужный дроссель, то некоторые «умельцы» перематывают сгоревший, подобрав провод подходящего диаметра и определив количество витков. Такая работа довольно кропотлива и обычно выполняется только для уникальных блоков питания, найти аналог, которым затруднительно.
My-chip.info — Дневник начинающего телемастера
Всем привет. Сегодня будем ремонтировать телевизор LG 21FC2RG с типичной поломкой «Не включается». Со слов хозяина, телевизор работал нормально, пока что-то не» щелкнуло», и телевизор не выключился. Если телевизор включить, то слышен писк, что свидетельствует о перегрузке блока питания. Итак, начнем ремонт.
Телевизор собран на шасси MC-059A. Я уже ремонтировал телевизор на похожем шасси с поломкой строчной развертки, ознакомиться с ней можете по этой ссылке. В данном случае поломка будет заключаться немного в другом.
Разобрав телевизор, первым делом почистил плату от пыли.
Внешний вид платы, после снятия задней крышки
Плата после чистки
После этого, детально рассмотрел детали на предмет наружных дефектов, но ничего обнаружить не удалось.
Так как блок питания работает в перегрузке (это можно определить по писку или характерным щелчкам), то ремонт начал с проверки цепи +B (110в). Первым в цепи, и наиболее легкодоступным для проверки, оказался диод D226. При его позвонке, мультиметр показал короткое замыкание.
Прозвонка диода D226
Так как для таких показаний не обязательно, чтоб диод был пробит, а коротить может любая деталь по шине +B, решил рассоединить перемычку J812,тем самым отключить строчную от питания, и повторить замер.
Поднятие одной ножки перемычки j812
После того, как перемычка была убрана, короткое замыкание на диоде пропало. Это означало, что короткое замыкание находилось дальше по схеме.
Замер диода D226 после снятия перемычки j812
Недолго думая, решил выпаять строчный транзистор Q401, и проверить его. Оказалось что он был причиной КЗ, так как был закорочен по всех выводах.
Замер транзистора Q401
Так как строчные транзисторы сами по себе почти никогда не горят, решил выяснить причину выхода из строя транзистора.
Напомню, что основными причинами выхода из строя строчных транзисторов являются:
Начал с замера выходного напряжения блока питания. Для этого, параллельно конденсатору С814(+110в) подключил лампу накаливания на 220в/60вт, и замерял +B. Оно составило 113вольт, что в пределах нормы.
Напряжение +B 113вольт
Далее, решил выпаять коллекторную емкость C414 номиналом 732Н на 1600в (это 7 нанофарад). Выпаяв ее, она оказалась в норме.
Проверка конденсатора С414
Получив эти результаты, решил подкинуть сточный транзистор, и кратковременно включить телевизор в сеть. Дабы, обезопасить транзистор, вместо ранее выпаянной перемычки J812, припаял лампу.
Подключение лампы вместо перемычки j812
Это может спасти транзистор, если строчная будет в сильном перегрузе, но не всегда это работает. Сделав эти процедуры, подключи телевизор к сети. Как только перевел телевизор в рабочий режим, возле анодного вывода ТДКС появились сильные разряды.
В этом месте искрило на корпус
Сразу отключил телевизор от питания. Транзистор не пострадал. Так была обнаружена причина поломки- это пробой ТДКС.
ТДКС в телевизоре использовался модели 6174v6006v. Правда, можно было постараться залить ТДКС силиконом, и возможно это продлило бы ему жизнь, но я такие эксперименты могу проводить на своих телевизорах, но что касается клиентов, заказываю всегда новые детали.
Получив через неделю новый тдкс, приступил к выпаиванию старого.
Новый 6174v6006v
Для этого, те ножки на которых не используются металлические насадки, освободил от олова с помощью оплетки.
Сбор олова на оплетку
Далее, в щель между платой и ТДКС вставил отвертку, и потихоньку начал греть вывода ТДКС Паяльным феном при температуре 330 градусов, пока ТДКС не выпаялся. Главное не перегреть плату, так как от высокой температуры она вздувается.
Плата после вы пайки ТДКС и дальнейшей чистки
Выпаяв ТДКС, почистил отверстия, и впаял новый ТДКС.
Установлен новый ТДКС 6174v6006v
Далее, впаял перемычку и транзистор, после чего подключил телевизор в сеть. Все заработало. После 6 часов проверки, отдал телевизор хозяину.
результат
Скачать схему можно по этой ссылке:
MC-059A.rar (3,8 MiB, 1 728 hits)
Вот такой ремонт. Всем спасибо за просмотр.
Весь инструмент и расходники, которые я использую в ремонтах находится здесь.Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме . (4 оценок, среднее: 5,00 из 5)
Импульсный блок питания на TL494 своими руками — схема и подробная инструкция по монтажу
Схема импульсного блока питания на TL494
- ШИМ контроллер (IC1) — TL494.
- Операционный усилитель (IC2) — LM324.
- 2 линейных регулятора (VR1, VR2) — L7805AB и LM7905.
- 4 биполярных транзистора T1, T2 — C945 и T3, T4 — MJE13009.
- 2 диодных моста — VDS2 (MB105) и VDS1 (GBU1506).
- 5 выпрямительных диодов (D3–D5, D8, D9) — 1N4148.
- 2 выпрямительных диода (D6, D7) — FR107.
- 2 выпрямительных диода (D10, D11) — FR207.
- 2 выпрямительных диода (D12, D13) — FR104.
- Диод Шоттки (D15) — F20C20.
- 5 дросселей — L1 (100 мкГн), L5 на желтом кольце (100 мкГн), L3, L4 (10 мкГн), L6 (8 мкГн).
- Синфазный дроссель (L2) — 29 мГн.
- 2 импульсных трансформатора — Tr1 (EE16) и Tr2 (EE28–EE33, ER35).
- Трансформатор (Tr3) — BV EI 382 1189.
- Предохранитель (F1) — 5А.
- Терморезистор (NTC1) — 5.1 Ом.
- Варистор (VDR1) — 250 В.
- Резисторы — R1, R9, R12, R14 (2.2 кОм); R2, R4, R5, R15, R16, R21 (4.7 кОм); R3 (5.6 кОм); R6, R7 (510 кОм); R8 (1 Мом); R13 (1.5 кОм); R17, R24 (22 кОм); R18 (1 кОм);
- R19, R20 (22 Ом); R22, R23 (1.8 кОм); R27, R28 (2.2 Ом); R29, R30 (470 кОм, 1–2 Вт); R31 (100 Ом, 1–2 Вт); R32, R33 (15 Ом); R34 (1 кОм, 1–2 Вт).
- Переменные резисторы (R10, R11) — 10 кОм, можно использовать 3 или 4.
- Резисторы (R25, R26) — 0.1 Ом; шунты, мощность зависит от выходной мощности БП.
- Конденсаторы — C1, C8, C27, C28, C30, C31 (0.1 мкФ); C3 (1 нФ, пленочный); C4–C7 (0.01 мкФ); C10 (0.47 мкФ, 275 В, X); C12 (0.1 мкФ, 275 В, X); C13, C14, C19 (0.01 мкФ, 2 кВ, Y); C20 (1 мкФ, 250 В, пленочный); C21 (2.2 нФ, 1 кВ); C23, C24 (3.3 нФ).
- Электролитические конденсаторы — C2, C9, C22, C25, C26, C34, C35 (47 мкФ); C11 (1 мкФ); C15, C16 (2.2 мкФ); C17, C18 (470 мкФ, 200 В); C29, C32, C33 (1000 мкФ, 35 В).
- 2 светодиода — D1 (зеленый, 5 мм) и D2 (красный, 5 мм), либо просто диоды, если не нужна индикация.
- Корпус Z4A.
- Выключатель — 250 В, 6 А.
- Держатель для предохранителя.
- Розетка для подключения к сети 220 В.
- Вилка для подключения к сети 220 В.
- Разъём для выходного напряжения.
- Вентилятор 12 В.
- Вольтметр.
- Амперметр.
- Входное напряжение — 220 вольт переменного тока.
- Выходное напряжение — от 0 до 30 вольт постоянного тока.
- Выходной ток составляет более 15 А (фактически тестированное значение).
- Режим стабилизации напряжения.
- Режим стабилизации тока (защита от короткого замыкания).
- Индикация обоих режимов светодиодами.
- Малые габариты и вес при большой мощности.
- Регулировка ограничения тока и напряжения.
pechatnaya-plata-dlya-impulsnogo-bloka-pitaniya.rar Видео о тестировании данного блока питания:
Как правильно выбрать для своих устройств блок питания
Итак, предположим ситуацию- Вам необходимо приобрести новый адаптер питания взамен вышедшего из строя. К сожалению такое бывает.
Или ваше устройство способно работать не только от батареек, но ещё и имеет вход для подключения внешнего блока питания, но им не комплектовался и вы уже устали покупать батарейки. Такое часто бывает с тонометрами и не только.
В первом случае, при наличии вышедшего из строя адаптера прежде чем бежать за покупкой, обратите внимание на старый адаптер, вам нужно будет выяснить некоторые параметры. А именно:
А именно:
- выходное напряжение — измеряется в вольтах ( V )
- выходной ток — измеряется в амперах ( А ) или миллиамперах (mA)
- полярность на разъёме
- тип и размер разъёма (штекера)
Часто эти надписи могут быть довольно мелкими поэтому возможно придётся воспользоваться лупой
В качестве примера рассмотрим довольно мощный блок питания от ноутбука, но на этом фото хорошо видны все параметры на которые нужно обратить внимание
Прежде всего интересуют параметры которые имеются именно на выходе источника питания, те что под надписью «Output» — выход.
В нашем примере это 19 вольт, 6,32 ампера. Обозначение полярности указывает что на разъёме питания «Плюс» внутри, а «Минус» снаружи разъёма. Это наиболее популярный вариант но случается что производители делают и по другому. Думаю из ниже приведённой графической схемы понятно как определить полярность. Точка изображает внутренний контакт разъёма, а полумесяц внешний.
Когда подбираем для себя адаптер питания важно, чтобы ток который выдаёт приобретаемый адаптер был не меньше того значения которое было в старом адаптере, но можно и несколько больше. А напряжение должно полностью соответствовать, тому которое потребляет ваше устройство
Но вышесказанное не относится к напряжению, оно должно быть точно таким же какое требуется для устройства и указанно на «родном» адаптере! Это Важно!
Итак прочитав нужные надписи на своём адаптере вы определились с напряжением, током и полярностью. Последнее, что нужно учесть это тип и размер самого разъёма питания. Их существует довольно много. Вот лишь несколько вариантов для общего представления.
Поэтому самым простым будет, взять свой требующий замены адаптер в магазин и сравнивать его разъём с разъёмом претендента на приобретение.
Некоторые устройства (очень редко встречается) питаются хоть и через адаптер но переменным током в таком случае полярность на адаптере указанна не будет, а рядом с указанным выходным напряжением будет нарисован символ переменного тока ∼